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Abstract: Visible Light Communication, a key optical wireless technology, offers 

reliable, high-bandwidth, and secure communication, making it a promising solution for 

a variety of applications. Despite its many advantages, optical wireless communication 

faces challenges in medical environments due to fluctuating signal strength caused by 

patient movement. Smart transmitter structures can improve system performance by 

adjusting system parameters to the fluctuating channel conditions. The purpose of this 

research is to examine how adaptive modulation performs in a medical body sensor 

network system that uses visible light communication. The analysis focuses on various 

medical situations and investigates machine learning algorithms. The study compares 

adaptive modulation based on supervised learning with that based on reinforcement 

learning. The findings indicate that both approaches greatly improve spectral efficiency, 

emphasizing the significance of implementing link adaptation in visible light 

communication-based medical body sensor networks. The use of the Q-learning 

algorithm in adaptive modulation enables real-time training and enables the system to 

adjust to the changing environment without any prior knowledge about the environment. 

A remarkable improvement is observed for photodetectors on the shoulder and wrist 

since they experience more DC gain. 

Keywords: VLC-based MBSNs, adaptive modulation, machine learning, reinforcement 

learning. 

 

  

1 Introduction 

NDOOR visible light communication (VLC) is a 

developing wireless communication technology that 

employs light-emitting diodes (LEDs) for transmitting 

data between devices. VLC functions by modulating the 

brightness of the light source to transmit digital signals, 

which can then be detected by a photodetector (PD) in 

the receiving device. VLC serves as a complement to 

radio frequency (RF) technology. A significant 

advantage of indoor VLC is its resistance to 

electromagnetic interference (EMI). Unlike RF 
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communication, VLC does not rely on the 

electromagnetic spectrum. As a result, VLC is less 

susceptible to interference and disruption from other 

wireless devices. This makes VLC highly suitable for 

environments where RF interference is a concern, such 

as hospitals and airplanes. Additionally, indoor VLC has 

the potential to provide higher data rates due to its wider 

spectrum compared to the RF spectrum. Moreover, 

indoor VLC offers enhanced security compared to RF 

communication since visible light cannot penetrate 

walls. 

Based on the aforementioned statements, VLC holds 

great promise as a technology for medical body sensor 

networks (MBSNs). MBSNs involve the use of wearable 

or implantable devices that monitor various 

physiological parameters such as heart rate, blood 

pressure, and body temperature. While VLC offers 

reliable, secure, and high-bandwidth wireless 

communication for MBSNs, there are still challenges 

that must be tackled, particularly the signal weakening 
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caused by the dynamic environment. Specifically, the 

channel DC gain can fluctuate due to the patient’s body 

movements, changes in the distance between the 

transmitter and receiver, obstructions, and shadowing. 

These variations result in changes to the received signal 

strength, which in turn lead to errors in the transmitted 

data [1-3]. 

To tackle these challenges, one possible solution is the 

implementation of adaptive modulation, which allows 

for dynamic adjustment of the modulation order based 

on the current channel conditions. By employing 

adaptive modulation, spectral efficiency (SE) can be 

enhanced while maintaining the necessary reliability 

standards for communication in MBSNs. Adaptive 

modulation involves the flexible adaptation of 

modulation schemes to strike a balance between data 

rate and reliability. Various adaptive modulation 

techniques have been proposed for VLC. However, in 

this particular study, our focus lies on adaptive 

modulation utilizing machine learning (ML) algorithms. 

These techniques leverage the power of data-driven 

learning and real-time adaptation to changing 

environments, rendering them a highly effective 

approach for optimizing system performance. It is 

important to note that due to the dynamic nature of 

communication channels, ML techniques may exhibit 

variability over time. 

Previous studies on machine learning applied to link 

adaptation have predominantly concentrated on other 

communication technologies, i.e. RF [4-8], and 

underwater acoustic communication systems [9-12]. 

Although there have been some investigations regarding 

learning in VLC, none of these studies have specifically 

addressed adaptive modulation in the context of VLC-

based MBSNs. 

The K-nearest neighbor (KNN) method was employed 

in a multiple-input multiple-output orthogonal frequency 

division multiplexing (MIMO-OFDM) system in [4]. To 

reduce the dimension of the feature space, a sub-carrier 

ordering technique was proposed. However, [8] 

introduced a deep convolutional neural network that 

eliminates the need for pre-processing mentioned in [4]. 

Both [4] and [5], along with other supervised learning-

based studies on link adaptation (LA), rely on offline 

training algorithms. This limitation restricts their 

suitability for real-time operations, as discussed in [6], 

and necessitates a comprehensive training dataset that 

effectively represents the entire database. To address 

these limitations, [6] utilized a Q-Learning method for 

link adaptation in RF systems. Similarly, in [7], a deep 

Q-learning method was employed, considering the rate 

region boundaries as states in the reinforcement learning 

(RL) algorithm. In the context of an indoor RF system, 

[5] focused on delay propagation and proposed a deep 

Q-learning method to perform adaptive modulation with 

outdated channel state information (CSI). 

In acoustic underwater communication (AUWC) 

systems, the significant challenge is the extended 

propagation delay, which renders the current CSI 

inaccessible. Addressing this issue, [9] introduced a 

Dyna-q algorithm that predicts channel state and 

calculates throughput. In addition, [10] developed a Q-

learning algorithm that considers various transmission 

parameters. It has been established in [11] that there is a 

weak correlation between signal-to-noise ratio (SNR) 

and bit error rate (BER) in underwater environments. To 

tackle the problem of link adaptation in acoustic 

underwater communication systems, [12] proposed a 

deep Q-learning method. Summaries of the existing 

machine learning-based link adaptation studies in RF 

and AUWC systems are presented in Tables 1 and 2, 

respectively. 

Furthermore, Several studies have explored VLC 

applications in medical body sensor networks and 

hospital environments. [13] and [14], explored VLC and 

infrared data transmission for patient monitoring and 

medical body sensor networks, while [15] and [16], 

analyzed the performance of VLC systems for smart 

patient monitoring and localization in hospital settings, 

respectively. In addition, [17] reviewed advancements in 

channel coding and modulation techniques, emphasizing 

the importance of integrating adaptive technologies to 

enhance reliability and efficiency in dynamic hospital 

scenarios. Therefore, this paper proposes a machine 

learning-based adaptive modulation scheme to address 

the challenges of dynamic hospital environments and 

patient mobility. Given this context, the primary 

contributions of this paper can be summarized as 

follows: 

• In our study conducted in a hospital environment, we 

employ a realistic ray tracing method to model the 

channel. This method takes into account user models, 

man-made objects, and illumination requirements while 

considering various physical factors such as wavelength-

dependent reflection properties, diffuse-specular 

reflections, measured light sources, and reflection orders 

up to 10. By incorporating these aspects, we enhance the 

accuracy of the channel impulse responses (CIRs).  

• To tackle the challenges posed by meeting the 

diverse quality of service (QoS) requirements in 

evolving VLC-based 6G wireless networks, particularly 

in medical body sensor networks, we propose a design 

that utilizes Q-learning for adaptive modulation. 

Specifically, we focus on the DC-biased optical OFDM 

(DCO-OFDM)-based adaptive VLC transmission 

method with intensity modulation and direct detection 

(IM/DD) scheme. Our approach involves developing 

precomputed BER expressions and incorporating 
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adaptive BER-based modulation order switching to 

optimize the transmission method and improve its 

performance. This enables us to learn the optimal 

modulation scheme based on the channel’s state 

information and environmental factors. Through 

simulation results, we demonstrate that our Q-learning-

based approach achieves higher spectral efficiency 

compared to traditional fixed modulation schemes in 

various hospital scenarios, highlighting its effectiveness 

in enhancing system performance.  

The remainder of the paper is organized as follows. 

Section 2 presents a thorough examination of the system 

model and scenarios. In Section 3, we introduce adaptive 

learning-driven modulation schemes. The performance 

of these techniques in both intensive care unit (ICU) 

ward and family-type patient room (FTPR) scenarios is 

showcased in Section 4. Lastly, Section 5 contains our 

concluding remarks. 

Table 1 Comparison of Existing Machine Learning-based Link 

Adaptation Studies in RF systems. 
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Table 2 Comparison of Existing Machine Learning-based Link 
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2 System Model 

In this section, we present the communication system 

model and describe the different scenarios in which the 

proposed model has been assessed. The comprehensive 

framework for a VLC-based MBSN is depicted in Fig. 1. 

The diagram showcases the inclusion of a feedback 

pathway, which enables the transmitter to receive timely 

updates on the channel’s condition. It is assumed that the 

feedback path exhibits perfection, meaning it provides 

accurate and error-free information. In this research, the 

downlink path is considered. 

 

 
Fig. 1 VLC-based MBSNs system model. 

In MBSN systems, on-body sensor nodes need to have 

low complexity due to power and size restrictions. 

Hence, in our system model, as illustrated in Fig. 1, the 

modulation order selection is performed on the 

transmitter side. M-ary pulse amplitude modulation 

(PAM) has been utilized for this VLC system with 

realistic CIR which can be expressed as [2]  

𝑠(𝑡) = 2𝑃𝑎𝑣𝑔 ∑ 𝑚𝑖  𝑝(𝑡 − 𝑖𝑇)𝑖    (1) 

where 𝑠(𝑡) is the modulated signal, 𝑃𝑎𝑣𝑔 denotes the 

average optical power, 𝑚𝑖 ∈ {
𝑚

𝑀−1
|𝑚 = 0, 1, … , 𝑀 − 1} 

is the amplitude of the 𝑖-th symbol, 𝑝(𝑡) is the pulse 

shape with 𝑇−1 ∫ 𝑝(𝑡)d𝑡 = 1 and 𝑝(𝑡) = 0 for 𝑡 ∉
[0, 𝑇], and 𝑇 is the symbol duration. The transmitted 

light is modulated by 𝑠(𝑡), which is then transmitted 

through the channel. The received signal at the PD can 

be expressed as follows  

𝑟(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡)   (2) 

where 𝑛(𝑡) represents the noise including the 

background interference and the shot noise, which is 

assumed to be white and Gaussian, and ℎ(𝑡) denotes the 

channel impulse response (CIR) which is modeled as 

[20]  

ℎ(𝑡) = ∑ 𝑃𝑘  𝛿(𝑡 − 𝑡𝑘)𝑀
𝑘=1    (3) 

where 𝑃𝑘 represents the gain of the 𝑘-th ray, 𝑡𝑘  

represents the travel duration of the 𝑘-th ray, and 𝑀 

represents the total number of collected rays. We assume 

that 0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑀 and 𝜏 + 𝑡𝑀 < 𝑇, where 𝜏 is 

the received pulse duration. Therefore, the inter-symbol 

interference (ISI) is zero at the receiver side. The 

received photocurrent at the output of the PD is obtained 

as follows  

 𝐼(𝑡) = ∑ 𝑃𝑘𝑠(𝑡 − 𝑡𝑘)𝐾
𝑘=1  + 𝑛(𝑡) 

      = ∑ 2𝑅𝑃𝑎𝑣𝑔𝑚𝑖

𝑖

 ∑ 𝑃𝑘𝑝(𝑡 − 𝑖𝑇 − 𝜏𝑘)

𝐾

𝑘=1

 + 𝑛(𝑡) 

where 𝑅 is the responsivity of the PDs.  Since there is no 

established analytical expression for the indoor VLC 

channel model, it becomes necessary to simulate it under 

specific conditions. This simulation was carried out in 

[21] using a site-specific non-sequential ray tracing 

method in two distinct hospital scenarios. As depicted in 

Fig. 2, three PDs are placed on the mobile patient’s 

shoulder, wrist, and ankle in both the ICU ward and the 
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FTPR scenarios. The patient’s movements follow 

random trajectories, and the received CIR for each PD is 

simulated accordingly. The objective is to maximize the 

throughput while maintaining a specific constraint on the 

symbol error rate (SER) along these trajectories. This is 

achieved by intelligently adjusting the order of PAM. 

Therefore, the Adaptive modulation optimization 

problem can be expressed as follows  

arg max
𝜇∈𝐼

{𝑅𝜇: 𝑆𝐸𝑅𝜇 ≤ 𝑆𝐸𝑅𝑡𝑎𝑟}   (4) 

where 𝑅𝜇 represents the throughput achieved with a 

specific modulation order. The set 𝐼 includes all 

available modulation orders which are denoted by 𝜇. 

𝑆𝐸𝑅𝜇 refers to the instantaneous symbol error rate which 

is associated with 𝜇, while 𝑆𝐸𝑅𝑡𝑎𝑟 is the maximum 

acceptable symbol error rate. 

 
(a) 

 
(b) 

Fig. 2 Hospital scenarios (a) ICU ward and (b) FTPR. D1, D2, 

and D3 represent the shoulder, wrist, and ankle sensors, 

respectively. S1 to S15 denote the LEDs. 

3 Proposed Machine Learning-based Adaptive 

Modulation Scheme 

Given the volatile and dynamic nature of the VLC-

based MBSNs system, the problem of adaptive 

modulation can be seen as a complex task within the 

realm of RL. We begin by offering a concise overview 

of RL and subsequently explore the adaptive modulation 

scheme, which relies on Q-learning. 

3.1 Reinforcement Learning-based Adaptive 

Modulation 

RL is a subset of machine learning that focuses on the 

interaction between an agent and its environment. Its 

primary goal is for the agent to acquire knowledge and 

make sequential decisions within the environment to 

maximize a cumulative reward. Unlike supervised 

learning, which relies on labeled samples representing 

the entire dataset, RL does not require collecting 

environmental samples. Instead, the agent learns through 

a process of trial and error. 

Q-learning is a widely used RL algorithm designed to 

solve Markov decision processes (MDPs). To 

understand Q-learning, it is important to grasp its 

fundamental components. The state space, denoted as 𝑆, 

encompasses the observed states s perceived by the 

agent within the environment. The action space, denoted 

as 𝐴, represents the set of available actions a that the 

agent can take in each state. The immediate reward 

function, represented by 𝑟(𝑠, 𝑎), calculates the reward 

received immediately after performing a particular 

action in a specific state. The policy, denoted as 𝜋(𝑠), 

determines how the agent maps observed states to 

corresponding actions. The Q-function, denoted as 

𝑄(𝑠, 𝑎), estimates the future cumulative discounted 

reward for an action taken by the agent in a given state, 

based on a specific policy. In this algorithm, the Q-

values are updated according to the following process   

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ⋅ [𝑟(𝑠, 𝑎) + 𝛾 ⋅

                      max
𝑎′∈𝐴,𝑠′∈𝑆

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]  (5) 

where 𝛼 ∈ [0,1], 𝛾 ∈ [0,1], 𝑠′, 𝑎′ denote the learning 

rate, discount factor, next state, and possible actions, 

respectively. The goal of Q-learning is to learn an 

optimal policy that maximizes the expected cumulative 

reward over time. The optimal policy is obtained as 

follows   

𝜋∗(𝑠) = arg max
𝑎∈𝐴

𝑄(𝑠, 𝑎).   (6) 

To balance the exploration and exploitation a common 

approach is to utilize ϵ-greedy strategy [22]. 

3.2 Q-Learning-based Adaptive Modulation 

 In the optimization problem of adaptive modulation, 

we initially consider the tuple (𝐻0, 𝜌) as state space, 

where ρ represents the quantized received signal-to-

noise ratio and the available modulation orders as action 

space. Therefore, for a specific channel state, when the 

agent changes the modulation order, it observes another 

state within the state space. This problem can be 
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formulated as an MDP to solve using the Q-learning 

algorithm. As can be seen in Fig. 3, the state changes 

due to patient movements and the agent decisions. In our 

model, we do not track state changes caused by human 

movements, and state transitions in the MDP of the Q-

learning-based adaptive modulation occur as a result of 

agent’s decisions at the current CIR. It is worth noting 

that patient movements are slow, allowing the agent to 

explore sufficiently in each state. Additionally, once the 

model is trained, the agent determines the modulation 

order based on primary observations of the channel. The 

received SNR is expressed as follows  

𝜌 =
𝑃

𝜎𝑛
2|𝐻0|2     (7) 

where 𝑃 is the transmitted optical power, 𝜎𝑛
2 is the noise 

power, and 𝐻0 is the channel DC-gain given by  

𝐻0 = ∫ ℎ(𝑡)d𝑡
+∞

0
 = ∑ 𝑃𝑘

𝑀
𝑘=1    (8) 

where 𝑃𝑘 and 𝑀 are defined in (3). 

The reward function, denoted by 𝑟(𝑠, 𝑎), is defined as 

the achieved throughput when performing action, a in 

state 𝑠 within the environment and is expressed by  

𝑟(𝑠, 𝑎) = {
log2(𝜇) (1 − 𝑆𝐸𝑅𝜇), if 𝑆𝐸𝑅𝜇 ≤ 𝑆𝐸𝑅𝑡𝑎𝑟

−𝑆𝐸𝑅𝜇, if 𝑆𝐸𝑅𝜇 > 𝑆𝐸𝑅𝑡𝑎𝑟

 (9) 

where 𝑆𝐸𝑅𝑡𝑎𝑟 is the target symbol error rate that must be 

satisfied. In addition, we incorporate the ϵ-greedy 

strategy, initially setting a relatively high value for ϵ, to 

promote exploration of the environment. By choosing 

random actions in the early stages of learning, the agent 

gains valuable insights about the environment. As the 

learning progresses, we gradually decrease the value of ϵ 

to encourage the agent to rely more on the learned 

policy. The proposed Q-learning-based adaptive 

modulation scheme is summarized in Algorithm 1. 

 
Fig. 3 Reinforcement learning model of VLC-based MBSNs 

adaptive modulation. 

4 Numerical Results 

In this research, the obtained CIRs from a previous 

study [21] were employed. The CIRs were collected 

from 20 distinct random paths, each containing 10 

consecutive points obtained from both the ICU ward and 

FTPR scenarios. The goal was to compare the SE 

performance of different schemes: the adaptive 

modulation scheme with the Q-learning algorithm, the 

KNN-based adaptive modulation scheme, a non-adaptive 

scheme, and the optimal achievable SE. Also, a flat 

fading channel model is employed for all channels due 

to the low data rates typically encountered in MBSN 

applications, as it proved to be satisfactory for the study. 

Table 3 provides an overview of the system model and 

the parameters of the adaptive modulation algorithm. 

Table 3 System Model and Q-Learning Model Parameters 

Simulation Parameters Value 

𝑃𝑒𝑙𝑒𝑐 10 dBm 

𝑁0 6.464 × 10−23 

Responsivity of PDs 1 

Modulation Scheme M-PAM 

𝜇 {2,4,8,16,32,64} 

𝛼 0.5 

𝛾 0.5 

Min 𝜖 0.001 

Max Episodes 500 

𝑆𝐸𝑅𝑡𝑎𝑟 10−3 

The Q-learning-based modulation scheme operates 

without the need for acquiring CSI to train the model. 

Instead, it learns by exploring the environment. While 

the exploration factor decreases gradually over time, the 

system consistently engages in exploration to adapt 

dynamically to changes in the system model and 

environment. These two features are crucial aspects of 

this algorithm. For the sake of brevity, we illustrated the 

training stage of the Q-learning algorithm only in the 

ICU-ward, as it experiences more fluctuating channel 

DC-gain and presents a more challenging environment 

[21]. Fig. 4 demonstrates the operation of the Q-

learning-based adaptive modulation in early stages of 

training process. As can be seen, it starts with 

exploration, leading to a higher SER than the target 

initially. However, as time progresses, the SER 

progressively decreases. Once the Q-table contains 

sufficient information, the agent shifts towards making 

more deterministic decisions using a greedy strategy. In 

Fig. 4, when the system transitions to the greedy 

decision making, the SER does not drastically drop but 

fluctuates below the 𝑆𝐸𝑅𝑡𝑎𝑟. This behavior is expected 

as it aligns with optimizing SE, as excessively low SER 

values would not be optimal. 

 

Environment 

D1 

D2 
 

Next State 

D3 
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Fig. 5 illustrates the SE performance of different 

methods. The optimal SE represents the maximum 

achievable SE while still satisfying the desired SER 

criterion. The KNN method requires training data, with 

60% of the CIRs (equivalent to 12 trajectories) used for 

training. The value of K, indicating the number of 

nearest neighbors considered, is set to 3. Both the KNN 

and Q-learning methods demonstrate significant 

improvements in SE compared to the non-adaptive 

method, which consistently employs binary PAM to 

ensure the desired 𝑆𝐸𝑅𝑡𝑎𝑟. As observed in Figs. 5a, 5c, 

and 5d, the SE achieved by the KNN method 

occasionally exceeds the optimal SE, indicating that the 

desired 𝑆𝐸𝑅𝑡𝑎𝑟 is not met in those instances. 

In contrast, the Q-learning method consistently meets 

the desired 𝑆𝐸𝑅𝑡𝑎𝑟 in all the figures. However, there are 

cases where SE falls below the optimal value due to 

limitations imposed by quantization levels. This occurs 

particularly when the optimal SER is close to the 

𝑆𝐸𝑅𝑡𝑎𝑟, as the method prioritizes meeting the 𝑆𝐸𝑅𝑡𝑎𝑟 

requirement and acts more cautiously. Increasing the 

quantization levels can enhance precision but also result 

in higher complexity. Furthermore, the ongoing 

exploration process also contributes to this outcome. 
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          (a) 

          (b) 

         (c) 

Fig. 4 Training stage of Q-learning based adaptive modulation 

scheme in ICU ward. (a-c) corresponds to D1-D3, respectively. 

As can be seen, the utilization of Q-learning-based 

adaptive modulation scheme results in significant 

improvements in SE compared to a non-adaptive 

scheme. Within the ICU ward, there is an increase of 

151% for D1, 178% for D2, and 81% for D3. 

Furthermore, in the FTPR scenario, our model 

demonstrated remarkable enhancements in SE. 

Specifically, there was an improvement of 304% for D1, 

303% for D2, and 151% for D3. The greater increase in 

SE observed in the FTPR scenario compared to the ICU 

ward suggests that the range of channel DC gain in 

FTPR is significantly higher than that in the ICU ward. 

This observation supports the findings mentioned in 

[21]. 

Additionally, the application of learning-based adaptive 

modulation leads to a more significant improvement in 

SE for PDs located on Shoulder (D1) and Wrist (D2) 

compared to Ankle (D3) in both scenarios. This can be 

attributed to the sinusoidal nature of the DC gain in D1 

and D2, which occurs due to their line-of-sight (LOS) 

rays. On the other hand, D3 receives non-line-of-sight 

(NLOS) rays, resulting in a smoother behavior of the DC 

gain. Consequently, D3 has a lower range of DC gain, 

leading to a reduction in SE. 

5 Conclusions 

In this paper, we proposed an ML-based adaptive 

modulation scheme for VLC-based MBSNs. The study 

employed an advanced ray tracing method to obtain 

CIRs in hospital scenarios. We investigated several 

modulation schemes, including the adaptive modulation 

scheme with the Q-learning algorithm, the KNN-based 

adaptive modulation, and a non-adaptive scheme as a 

benchmark, to enhance the SE performance. The Q-

learning-based modulation scheme demonstrated the 

ability to dynamically adapt to changes in the system 

model and environment without explicit CSI 

requirements.  

Through exploration and exploitation, the Q-learning 

algorithm gradually improved its SER performance and 

eventually met the desired SER. The KNN method also 

exhibited improvements in SE compared to the non-

adaptive scheme but occasionally failed to achieve the 

desired SER because of the limitations of the training 

dataset, since KNN relies heavily on the availability of 

comprehensive and representative data to make accurate 

predictions. In contrast, the Q-learning method 

consistently achieved the desired SER, although in some 

cases, the SE fell below the optimal value due to 

limitations imposed by quantization levels and the 

cautious behavior of the method near the target SER. 

Increasing quantization levels could improve precision 

but would lead to higher complexity.  

Overall, this research emphasizes the advantages and 

limitations of the Q-learning-based adaptive modulation 

approach in VLC-based MBSNs. Future studies could 

concentrate on optimizing the quantization process or 

using neural networks to eliminate the use of 

quantization process and exploring alternative adaptive 

modulation algorithms to enhance SE performance in 

VLC-based MBSNs. Furthermore, for higher data rates, 

where delay becomes crucial in data transmission, more 

complicated reinforcement learning models can be 

utilized to track the user’s mobility in the environment. 
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Fig. 5 Spectral efficiency analysis of different modulation schemes in (a-c) ICU ward and (d-f) FTPR. 
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